## Saarland University

Faculty of Mathematics and Computer Science
Department of Mathematics
Prof. Dr. Roland Speicher
Dr. Johannes Hoffmann

Exercises for the lecture
High Dimensional Analysis: Random Matrices and Machine Learning
Summer term 2023
Sheet 6
Hand-in: Friday, 14.07.2023, 22:00 Uhr via CMS

Exercise 1 ( $5+5$ points).
(a) Let $t$ be Poisson-distributed with rate $\lambda>0$, i.e. $t$ is a discrete random variable supported on $\mathbb{N}_{0}$ with distribution

$$
\mathrm{P}(t=k)=\frac{\lambda^{k} \exp (-\lambda)}{k!} .
$$

Compute the cumulants of $t$ using their definition as coefficients in the logarithm of the characteristic function.
(b) Let $t$ be $\chi^{2}$-distributed with $k \in \mathbb{N}$ degrees of freedom, i.e. $t=\sum_{j=1}^{k} x_{j}^{2}$, where the $x_{j} \sim N(0,1)$ are independent. Compute the cumulants of $t$ using Theorem 7.13.

Exercise 2 (10 points). Let $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\kappa_{n}\right\}_{n \in \mathbb{N}}$ be two sequences that satisfy the relation

$$
\alpha_{n}=\sum_{\pi \in \mathcal{P}(n)} k_{\pi}
$$

where $\kappa_{\pi}=\kappa_{1}^{r_{1}} \cdot \ldots \cdot \kappa_{n}^{r_{n}}$ and $r_{j}$ is the number of blocks of $\pi$ of size $j$. We want to show that, as formal power series,

$$
\begin{equation*}
\log \left(1+\sum_{n=1}^{\infty} \alpha_{n} \frac{z^{n}}{n!}\right)=\sum_{n=1}^{\infty} \kappa_{n} \frac{z^{n}}{n!} . \tag{1}
\end{equation*}
$$

(a) Show that by differentiating both sides of (1) it suffices to prove

$$
\begin{equation*}
\sum_{n=0}^{\infty} \alpha_{n+1} \frac{z^{n}}{n!}=\left(1+\sum_{n=1}^{\infty} \alpha_{n} \frac{z^{n}}{n!}\right) \sum_{n=0}^{\infty} \kappa_{n+1} \frac{z^{n}}{n!} \tag{2}
\end{equation*}
$$

(b) By grouping the terms in $\sum_{\pi \in \mathcal{P}(n)} k_{\pi}$ according to the size of the block containing 1 , show that

$$
\alpha_{n}=\sum_{\pi \in \mathcal{P}(n)} k_{\pi}=\sum_{m=0}^{n-1}\binom{n-1}{m} \kappa_{m+1} \alpha_{n-m-1} .
$$

(c) Use the result of (b) to prove (2).

Exercise 3 ( $5+5+5+5$ points). We consider, for $p=1$, our 1 hidden layer neural network of width $m$,

$$
f_{m}(x)=\frac{1}{\sqrt{m}} a^{T} \sigma(b x+c),
$$

where $a, b$ and $c$ are independent standard Gaussian random vectors in $\mathbb{R}^{m}$. (Note that we include here also a bias $c$ in the argument of $\sigma$ ). We want to use this to learn the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(x)=\sqrt{|x|}+\sin (10 x)
$$

restricted to the interval $[-1,1]$.
Choose randomly 15 data points $x_{i}$, drawn from the uniform distribution on the interval $[-1,1]$, and let $y_{i}:=g\left(x_{i}\right)$. From this data we try to recover $g$ : Use gradient descent to train the parameters $\{a, b\}$ (we don't train the bias $c$, but keep this fixed) with respect to the loss function

$$
\mathcal{L}(a, b)=\frac{1}{2} \sum_{i=1}^{15}\left(y_{i}-f_{m}\left(x_{i}\right)\right)^{2}
$$

for varying widths $m$. It is actually advisable to use stochastic gradient descent; that is, in each step one uses only the gradient of $\left(y_{i}-f_{m}\left(x_{i}\right)\right)^{2}$, with respect to $a$ and to $b$, for a randomly chosen $i$. Train until the loss function is less than 0.01 (in the case $m>15$ ) or until it does not decrease any more (in the case $m \leq 15$ ). Plot then the trained function $f_{m}(x)$ against the target function $g(x)$ for 2000 points $x$ sampled evenly from the interval $[-1,1]$, for $m \in\{1,2,5,10,15,30,100,500\}$. Show also the 15 data points $\left(x_{i}, g\left(x_{i}\right)\right)$ in this plot. As learning rate you might choose any $\eta \in(0.001,0.01)$.
(a) Do this for $\sigma(x)=\sin (8 x)$.
(b) Do this for $\sigma=$ ReLU.
(c) Check in those cases also what happens if you switch off the bias (i.e., put $c=0$ ).
(d) Explain why it is a bad idea to switch off the bias in the case of $\sigma(x)=\sin (8 x)$. Explain why it is an even worse idea to do this in the case of $\sigma=\operatorname{ReLU}$.

