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Exercise 1 (5 + 5 points).

(a) Let t be Poisson-distributed with rate λ > 0, i.e. t is a discrete random variable
supported on N0 with distribution

P(t = k) =
λk exp(−λ)

k!
.

Compute the cumulants of t using their definition as coefficients in the logarithm of
the characteristic function.

(b) Let t be χ2-distributed with k ∈ N degrees of freedom, i.e. t =
∑k

j=1 x
2
j , where the

xj ∼ N(0, 1) are independent. Compute the cumulants of t using Theorem 7.13.

Exercise 2 (10 points). Let {αn}n∈N and {κn}n∈N be two sequences that satisfy the
relation

αn =
∑

π∈P(n)

kπ,

where κπ = κr1
1 · . . . · κrn

n and rj is the number of blocks of π of size j. We want to show
that, as formal power series,

log

(
1 +

∞∑
n=1

αn
zn

n!

)
=

∞∑
n=1

κn
zn

n!
. (1)

(a) Show that by differentiating both sides of (1) it suffices to prove
∞∑
n=0

αn+1
zn

n!
=

(
1 +

∞∑
n=1

αn
zn

n!

)
∞∑
n=0

κn+1
zn

n!
. (2)

(b) By grouping the terms in
∑

π∈P(n) kπ according to the size of the block containing
1, show that

αn =
∑

π∈P(n)

kπ =
n−1∑
m=0

(
n− 1

m

)
κm+1αn−m−1.

(c) Use the result of (b) to prove (2).
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Exercise 3 (5 + 5 + 5 + 5 points). We consider, for p = 1, our 1 hidden layer neural
network of width m,

fm(x) =
1√
m
aTσ(bx+ c),

where a, b and c are independent standard Gaussian random vectors in Rm. (Note that
we include here also a bias c in the argument of σ). We want to use this to learn the
function g : R → R given by

g(x) =
√

|x|+ sin(10x),

restricted to the interval [−1, 1].
Choose randomly 15 data points xi, drawn from the uniform distribution on the interval

[−1, 1], and let yi := g(xi). From this data we try to recover g: Use gradient descent to
train the parameters {a, b} (we don’t train the bias c, but keep this fixed) with respect
to the loss function

L(a, b) = 1

2

15∑
i=1

(
yi − fm(xi)

)2
,

for varying widths m. It is actually advisable to use stochastic gradient descent ; that is,
in each step one uses only the gradient of

(
yi − fm(xi)

)2, with respect to a and to b, for a
randomly chosen i. Train until the loss function is less than 0.01 (in the case m > 15) or
until it does not decrease any more (in the case m ≤ 15). Plot then the trained function
fm(x) against the target function g(x) for 2000 points x sampled evenly from the interval
[−1, 1], for m ∈ {1, 2, 5, 10, 15, 30, 100, 500}. Show also the 15 data points (xi, g(xi)) in
this plot. As learning rate you might choose any η ∈ (0.001, 0.01).

(a) Do this for σ(x) = sin(8x).

(b) Do this for σ = ReLU.

(c) Check in those cases also what happens if you switch off the bias (i.e., put c = 0).

(d) Explain why it is a bad idea to switch off the bias in the case of σ(x) = sin(8x).
Explain why it is an even worse idea to do this in the case of σ = ReLU.
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