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Recall that the ReLU function is defined as ReLU(t) = max(0, t).

Exercise 1 (10 points). We now investigate a one-layer perceptron with random features
and n parameters: given an input x ∈ R, the neural network computes y = wσ(ax + b),
where

• a ∼ N(0, In) is the weight and b ∼ N(0, In) is the bias,

• σ : R → R is the (non-linear) activation, applied component-wise,

• w ∈ R1×n is the linear regression of the training data.

Consider the following eleven (training) data points:1

xk −5 −4 −3 −2 −1 0 1 2 3 4 5
yk −3 −3 −4 1 −0.2 0.1 2 1.8 1.9 −0.2 2

For each n ∈ {5, 10, 11, 30, 300, 1000} and each σ ∈ {ReLU, sin} do the following:

(a) For two d-dimensional standard Gaussian vectors a, b ∼ N(0, In), compute the fea-
ture matrix

F =
(
f1 . . . f11

)
∈ Rn×11, where fk = σ(a · xk + b).

(b) Perform linear regression on the so-obtained features in order to fit the data given
above: w = Y F T (FF T )+, where Y =

(
y1 . . . y11

)
∈ R1×11 and A+ is the pseudo-

inverse of A.

(c) Plot the output of your neural network on the grid from −5 to 5 with step size 0.1.
For comparison, also plot the original data points. It suffices to hand in the plots,
no need to print out all the intermediate data.

Compare the plots and describe what you see. This is an instance of the so-called double-
descent!

please turn over

1Copy-friendly version of the yk: [-3, -3, -4, 1, -0.2, 0.1, 2, 1.8, 1.9, -0.2, 2]
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https://cms.sic.saarland/hdarmml/


Exercise 2 (7 points). Consider the entries xij of our matrix X = (xij) ∈ Rp×n as
formal variables. For fixed z ∈ C, we put

R = R(z) =

(
1

n
XXT − zIp

)−1

∈ Rp×p.

Show that we have [
∂R

∂xij

]
kl

= − 1

n

(
Rki[X

TR]jl + [RX]kjRil

)
.

Exercise 3 ((3 + 4) + (2 + 3) points). For a function σ : R → R we denote

θ1(σ) :=
1√
2π

∫ ∞

−∞
σ(t)2 exp

(
−t2

2

)
dt

and

θ2(σ) :=

(
1√
2π

∫ ∞

−∞
σ′(t) exp

(
−t2

2

)
dt

)2

=

(
1√
2π

∫ ∞

−∞
tσ(t) exp

(
−t2

2

)
dt

)2

.

(a) Let σ : R → R be such that θ1(σ) and θ2(σ) are finite.

(i) Show that θ2(σ) ≤ θ1(σ).

(ii) Show that θ2(σ) = θ1(σ) if and only if σ is a linear function, i.e., σ(t) = βt for
some β ∈ R.

(b) Let α ∈ R be a constant and consider the shifted ReLU function

σ(t) = ReLU(t)− α.

(i) Determine α such that

1√
2π

∫ ∞

−∞
σ(t) exp

(
−t2

2

)
dt = 0.

(ii) Determine for this σ the quantities θ1(σ) and θ2(σ).

please turn over
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Exercise 4 ((4 + 4) + 3 points). Like in class, consider standard Gaussian random
matrices X ∈ Rp×n and W ∈ Rp×p together with a non-linearity σ : R → R. Let

F := σ

(
1
√
p
WX

)
∈ Rp×p and M :=

1

n
FF T ∈ Rp×p.

(a) Consider σ1(t) = t2 − 1 and σ2(t) = t3 − 3t. For each σ ∈ {σ1, σ2} do the following:

(i) Compute θ1(σ) and show that θ2(σ) = 0.

(ii) For p = 2000 and each γ ∈
{
1, 1

2
, 1
4

}
, draw a diagram including a histogram

of the eigenvalues of M and the corresponding Marchenko-Pastur distribution.
Re-scale σ such that the distribution matches the histogram.

(b) From class we know that in general, F behaves like

F̃ =

√
θ2√
p
WX +

√
θ1 − θ2Z

for (independent) standard Gaussian matrices W ∈ Rp×p and X,Z ∈ Rp×n. For
σ(t) = ReLU(t) − α from the previous exercise, compare a histogram of the eigen-
values of M with a histogram of the eigenvalues of M̃ := 1

n
F̃ F̃ T . Again, use p = 2000

and consider each γ ∈
{
1, 1

2
, 1
4

}
.
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