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Besides Wishart matrices the other important random matrix ensemble is given by
Wigner matrices. A symmetric matrix X = X7 € R™" is a Wigner matriz if, apart
from the symmetry condition, all its entries are independent and identically distributed
according to a centred Gaussian distribution (this can be more general, but let us restrict
here to Gaussians). In order to have an asymptotic distribution for n — oo we have to
normalize the entries to have variance 1/n, i.e., our Wigner matrix has the form

1 n nxn
Xn = %(mij)i,j:1 € R x y
where
e 1, ~ N(0,1) for all ¢, 7,
o {z;;: 1 <i<j<n}isindependent, and
® Tji = Tij for all Z,j

Their asymptotic eigenvalue distribution was determined by Wigner in 1955; this was
the first and still most fundamental (asymptotic) result about random matrices. In the
following two exercises we will address Wigner’s semicircle law from a numerical and a
theoretical perspective.

Exercise 1 (6 points). Generate histograms of the eigenvalues of an n x n Wigner
matrix, where n € {10,100, 1000, 2000}. Do this in each case for at least two realizations,
in order to convince yourself that also in this case we have concentration of the eigenvalues
around a deterministic asymptotic distribution. This asymptotic distribution is Wigner’s
semicircle, which has density

1
o

V()= —VI—£ on [-2,2].

Compare your histograms with this semicircle distribution.
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Exercise 2 (3 + 3 + 3 4 3 points). We will now determine the form of the semicircle
in an analytic way relying on the Stieltjes transform, similar as we did it in class for
the Marchenko-Pastur distribution. Denote by .S,, the Stieltjes transform of our Wigner
matrices,

Sn(2) = E [tr((X, — 21,)7")]
We will try to derive an equation for the limiting Stieltjes transform (assuming that it
exists) S(z) := lim,, 00 Sn(2), by writing X, in the form

X, = (o)
vn\z Y
where Y € R(®=Dx(=1) contains the last n — 1 rows and columns of X,, and = € R*1
is the vector = (Za1,...,2,1)7. The replacement of the Sherman-Morrison formula in

this case is given by Schur’s complement formula, which says that for a decomposition of
M € R™™ in the form

a o' -1 -1 -1
M=, p D e Rl =y e R g eR,

the inverse of M exists if D is invertible and a — v"D7'v # 0, and in this case the
(1,1)-entry of M~! is given by
1
a—vTD 1y’
(a) Prove the formula above for the (1, 1)-entry of M~!.
Hint: it might be good to also find formulas for the other entries of M 1.

(M~ =

(b) By applying the formula above to M = X,, — z1,, show that

1

M~ ——5 oy

(c) By doing the same with splitting off the k-th row and column in M, show that the
Stieltjes transform of our Wigner matrix satisfies in the limit n — oo the equation

1

RS —

(d) Solve the equation for S(z) and derive from this, by Stieltjes inversion formula, the
formula for the density of the semicircle.

Exercise 3 (4 + 4 points). Let @ € RP*? and U,V € RP*" be deterministic matrices
such that both Q and @ + UV™ are invertible.

(a) Show that I, + VTQ™U is also invertible.
(b) Show that (Q + UVT)™ = Q' — Q~'U(I, + VIQ'U)"'WVTQ".
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Exercise 4 (3 + 5+ 6 points). Let p,n € N with p even and v := £. In Assignment
2, Exercise 1 we looked on Wishart matrices where ¥ is not the identity matrix, but has
one half of its eigenvalues equal to t; = 1 and the other half equal to ¢ = 2. Let us now
consider such a situation with arbitrary ¢;,%, € R, i.e., our data matrix is of the form

X pXn
<Y> c RPN
where

e the columns of X € R2*" are N(0, tllg)—distributed,

e the columns of Y € R2*" are N(0, tolr) distributed, and

e all these column vectors are independent.

Thus the Wishart matrix is of the form

(XN er o L (XXT OXYT\
Z_ﬁ(y)(X Y)_E(YXT yyT ) SR

(a) Recall that, apart from some zeros, 3 has the same eigenvalues as

.1 1
¥=—(XT Y7 <X> (X'X +Y"Y) e R™™

n Y]
Give, for p < n, the relation between the Stieltjes transforms of S and of .

(b) By following the same ideas as in class for the determination of the Marchenko-
Pastur law, show that the limit S(z) of the Stieltjes transform for this > satisfies

5 7 tS(z) v 125(2)
1 S - - <. _ .
T2 = s T 2T nie)

(c) If we put S(z) := S(z)/7, then this satisfies the equation

1 1 t1vS(z 1 tyS(z
S(x) = -2 4 L 5 1 Sz)
vz 2214t79S5(2) 221+ t7S(2)
This S (z) gives us then the density ¢ of the asymptotic eigenvalue distribution of
Y} via the Stieljes inversion formula
.1 :
Y(t) = lim — Im(S(t + ie)).

e=0 T
Lett1 =3,t; =15 and v = % In the same diagram, plot the following:

(i) The graph of 1, obtained by numerically applying a fixed-point iteration to
calculate 1(t) ~ ZIm(S(t + ie)) for ¢ = 0.01." As a starting point, any
point in the complex upper half-plane will work and result in a solution in the
complex upper half-plane. Use enough values for ¢ to get a smooth curve!

(Note that there will be an additional pole at 0, coming from the difference
between ¥ and 3..)

(ii) A histogram of the eigenvalues of a numerical simulation of the corresponding
Wishart matrix with p = 500, normalized to fit the density.

! Although the equation for S(z) is a cubic one and might thus be solved explicitly, it is easier to solve
the equation numerically as a fixed-point equation (especially in more general situations).
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