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Besides Wishart matrices the other important random matrix ensemble is given by
Wigner matrices. A symmetric matrix X = XT ∈ Rn×n is a Wigner matrix if, apart
from the symmetry condition, all its entries are independent and identically distributed
according to a centred Gaussian distribution (this can be more general, but let us restrict
here to Gaussians). In order to have an asymptotic distribution for n → ∞ we have to
normalize the entries to have variance 1/n, i.e., our Wigner matrix has the form

Xn =
1√
n
(xij)

n
i,j=1 ∈ Rn×n,

where

• xij ∼ N(0, 1) for all i, j,

• {xij : 1 ≤ i ≤ j ≤ n} is independent, and

• xji = xij for all i, j.

Their asymptotic eigenvalue distribution was determined by Wigner in 1955; this was
the first and still most fundamental (asymptotic) result about random matrices. In the
following two exercises we will address Wigner’s semicircle law from a numerical and a
theoretical perspective.

Exercise 1 (6 points). Generate histograms of the eigenvalues of an n × n Wigner
matrix, where n ∈ {10, 100, 1000, 2000}. Do this in each case for at least two realizations,
in order to convince yourself that also in this case we have concentration of the eigenvalues
around a deterministic asymptotic distribution. This asymptotic distribution is Wigner’s
semicircle, which has density

ψ(t) =
1

2π

√
4− t2 on [−2, 2].

Compare your histograms with this semicircle distribution.
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Exercise 2 (3 + 3 + 3 + 3 points). We will now determine the form of the semicircle
in an analytic way relying on the Stieltjes transform, similar as we did it in class for
the Marchenko-Pastur distribution. Denote by Sn the Stieltjes transform of our Wigner
matrices,

Sn(z) = E
[
tr
(
(Xn − zIn)

−1
)]

We will try to derive an equation for the limiting Stieltjes transform (assuming that it
exists) S(z) := limn→∞ Sn(z), by writing Xn in the form

Xn =
1√
n

(
x11 xT

x Y

)
,

where Y ∈ R(n−1)×(n−1) contains the last n − 1 rows and columns of Xn and x ∈ Rn−1

is the vector x = (x21, . . . , xn1)
T . The replacement of the Sherman-Morrison formula in

this case is given by Schur’s complement formula, which says that for a decomposition of
M ∈ Rn×n in the form

M =

(
a vT

v D

)
D ∈ R(n−1)×(n−1), v ∈ Rn−1, a ∈ R,

the inverse of M exists if D is invertible and a − vTD−1v ̸= 0, and in this case the
(1, 1)-entry of M−1 is given by

[M−1]11 =
1

a− vTD−1v
.

(a) Prove the formula above for the (1, 1)-entry of M−1.

Hint: it might be good to also find formulas for the other entries of M−1.

(b) By applying the formula above to M = Xn − zIn show that

[M−1]11 ≈
1

−z − Sn(z)
.

(c) By doing the same with splitting off the k-th row and column in M , show that the
Stieltjes transform of our Wigner matrix satisfies in the limit n→ ∞ the equation

S(z) =
1

−z − S(z)
.

(d) Solve the equation for S(z) and derive from this, by Stieltjes inversion formula, the
formula for the density of the semicircle.

Exercise 3 (4 + 4 points). Let Q ∈ Rp×p and U, V ∈ Rp×n be deterministic matrices
such that both Q and Q+ UV T are invertible.

(a) Show that In + V TQ−1U is also invertible.

(b) Show that (Q+ UV T )−1 = Q−1 −Q−1U(In + V TQ−1U)−1V TQ−1.

please turn over

2



Exercise 4 (3 + 5 + 6 points). Let p, n ∈ N with p even and γ := p
n
. In Assignment

2, Exercise 1 we looked on Wishart matrices where Σ is not the identity matrix, but has
one half of its eigenvalues equal to t1 = 1 and the other half equal to t2 = 2. Let us now
consider such a situation with arbitrary t1, t2 ∈ R, i.e., our data matrix is of the form(

X
Y

)
∈ Rp×n,

where

• the columns of X ∈ R
p
2
×n are N(0, t1I p

2
)-distributed,

• the columns of Y ∈ R
p
2
×n are N(0, t2I p

2
) distributed, and

• all these column vectors are independent.

Thus the Wishart matrix is of the form

Σ̂ =
1

n

(
X
Y

)(
XT Y T

)
=

1

n

(
XXT XY T

Y XT Y Y T

)
∈ Rp×p.

(a) Recall that, apart from some zeros, Σ̂ has the same eigenvalues as

Σ̌ =
1

n

(
XT Y T

)(X
Y

)
=

1

n
(XTX + Y TY ) ∈ Rn×n.

Give, for p ≤ n, the relation between the Stieltjes transforms of Σ̂ and of Σ̌.

(b) By following the same ideas as in class for the determination of the Marchenko-
Pastur law, show that the limit Š(z) of the Stieltjes transform for this Σ̌ satisfies

1 + zŠ(z) =
γ

2

t1Š(z)

1 + t1Š(z)
+
γ

2

t2Š(z)

1 + t2Š(z)
.

(c) If we put S(z) := Š(z)/γ, then this satisfies the equation

S(z) = − 1

γz
+

1

2z

t1γS(z)

1 + t1γS(z)
+

1

2z

t2γS(z)

1 + t2γS(z)
.

This S(z) gives us then the density ψ of the asymptotic eigenvalue distribution of
Σ̂ via the Stieljes inversion formula

ψ(t) = lim
ε→0

1

π
Im

(
S(t+ iε)

)
.

Let t1 = 3, t2 = 15 and γ = 1
5
. In the same diagram, plot the following:

(i) The graph of ψ, obtained by numerically applying a fixed-point iteration to
calculate ψ(t) ≈ 1

π
Im

(
S(t + iε)

)
for ε = 0.01.1 As a starting point, any

point in the complex upper half-plane will work and result in a solution in the
complex upper half-plane. Use enough values for t to get a smooth curve!
(Note that there will be an additional pole at 0, coming from the difference
between Σ̂ and Σ̌.)

(ii) A histogram of the eigenvalues of a numerical simulation of the corresponding
Wishart matrix with p = 500, normalized to fit the density.

1Although the equation for S(z) is a cubic one and might thus be solved explicitly, it is easier to solve
the equation numerically as a fixed-point equation (especially in more general situations).
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