Saarland University
 Faculty of Mathematics and Computer Science
 Department of Mathematics
 Prof. Dr. Roland Speicher
 Dr. Johannes Hoffmann

Exercises for the lecture
High Dimensional Analysis: Random Matrices and Machine Learning
Summer term 2023
Sheet 4
Hand-in: Friday, 09.06.2023, 22:00 Uhr via CMS

Besides Wishart matrices the other important random matrix ensemble is given by Wigner matrices. A symmetric matrix $X=X^{T} \in \mathbb{R}^{n \times n}$ is a Wigner matrix if, apart from the symmetry condition, all its entries are independent and identically distributed according to a centred Gaussian distribution (this can be more general, but let us restrict here to Gaussians). In order to have an asymptotic distribution for $n \rightarrow \infty$ we have to normalize the entries to have variance $1 / n$, i.e., our Wigner matrix has the form

$$
X_{n}=\frac{1}{\sqrt{n}}\left(x_{i j}\right)_{i, j=1}^{n} \in \mathbb{R}^{n \times n},
$$

where

- $x_{i j} \sim N(0,1)$ for all i, j,
- $\left\{x_{i j}: 1 \leq i \leq j \leq n\right\}$ is independent, and
- $x_{j i}=x_{i j}$ for all i, j.

Their asymptotic eigenvalue distribution was determined by Wigner in 1955; this was the first and still most fundamental (asymptotic) result about random matrices. In the following two exercises we will address Wigner's semicircle law from a numerical and a theoretical perspective.

Exercise 1 (6 points). Generate histograms of the eigenvalues of an $n \times n$ Wigner matrix, where $n \in\{10,100,1000,2000\}$. Do this in each case for at least two realizations, in order to convince yourself that also in this case we have concentration of the eigenvalues around a deterministic asymptotic distribution. This asymptotic distribution is Wigner's semicircle, which has density

$$
\psi(t)=\frac{1}{2 \pi} \sqrt{4-t^{2}} \quad \text { on } \quad[-2,2]
$$

Compare your histograms with this semicircle distribution.

Exercise $2(3+3+3+3$ points). We will now determine the form of the semicircle in an analytic way relying on the Stieltjes transform, similar as we did it in class for the Marchenko-Pastur distribution. Denote by S_{n} the Stieltjes transform of our Wigner matrices,

$$
S_{n}(z)=E\left[\operatorname{tr}\left(\left(X_{n}-z I_{n}\right)^{-1}\right)\right]
$$

We will try to derive an equation for the limiting Stieltjes transform (assuming that it exists) $S(z):=\lim _{n \rightarrow \infty} S_{n}(z)$, by writing X_{n} in the form

$$
X_{n}=\frac{1}{\sqrt{n}}\left(\begin{array}{cc}
x_{11} & x^{T} \\
x & Y
\end{array}\right)
$$

where $Y \in \mathbb{R}^{(n-1) \times(n-1)}$ contains the last $n-1$ rows and columns of X_{n} and $x \in \mathbb{R}^{n-1}$ is the vector $x=\left(x_{21}, \ldots, x_{n 1}\right)^{T}$. The replacement of the Sherman-Morrison formula in this case is given by Schur's complement formula, which says that for a decomposition of $M \in \mathbb{R}^{n \times n}$ in the form

$$
M=\left(\begin{array}{ll}
a & v^{T} \\
v & D
\end{array}\right) \quad D \in \mathbb{R}^{(n-1) \times(n-1)}, \quad v \in \mathbb{R}^{n-1}, \quad a \in \mathbb{R}
$$

the inverse of M exists if D is invertible and $a-v^{T} D^{-1} v \neq 0$, and in this case the (1,1)-entry of M^{-1} is given by

$$
\left[M^{-1}\right]_{11}=\frac{1}{a-v^{T} D^{-1} v}
$$

(a) Prove the formula above for the $(1,1)$-entry of M^{-1}.

Hint: it might be good to also find formulas for the other entries of M^{-1}.
(b) By applying the formula above to $M=X_{n}-z I_{n}$ show that

$$
\left[M^{-1}\right]_{11} \approx \frac{1}{-z-S_{n}(z)}
$$

(c) By doing the same with splitting off the k-th row and column in M, show that the Stieltjes transform of our Wigner matrix satisfies in the limit $n \rightarrow \infty$ the equation

$$
S(z)=\frac{1}{-z-S(z)}
$$

(d) Solve the equation for $S(z)$ and derive from this, by Stieltjes inversion formula, the formula for the density of the semicircle.

Exercise 3 ($4+4$ points). Let $Q \in \mathbb{R}^{p \times p}$ and $U, V \in \mathbb{R}^{p \times n}$ be deterministic matrices such that both Q and $Q+U V^{T}$ are invertible.
(a) Show that $I_{n}+V^{T} Q^{-1} U$ is also invertible.
(b) Show that $\left(Q+U V^{T}\right)^{-1}=Q^{-1}-Q^{-1} U\left(I_{n}+V^{T} Q^{-1} U\right)^{-1} V^{T} Q^{-1}$.

Exercise $4\left(3+5+6\right.$ points). Let $p, n \in \mathbb{N}$ with p even and $\gamma:=\frac{p}{n}$. In Assignment 2, Exercise 1 we looked on Wishart matrices where Σ is not the identity matrix, but has one half of its eigenvalues equal to $t_{1}=1$ and the other half equal to $t_{2}=2$. Let us now consider such a situation with arbitrary $t_{1}, t_{2} \in \mathbb{R}$, i.e., our data matrix is of the form

$$
\binom{X}{Y} \in \mathbb{R}^{p \times n}
$$

where

- the columns of $X \in \mathbb{R}^{\frac{p}{2} \times n}$ are $N\left(0, t_{1} I_{\frac{p}{2}}\right)$-distributed,
- the columns of $Y \in \mathbb{R}^{\frac{p}{2} \times n}$ are $N\left(0, t_{2} I_{\frac{p}{2}}\right)$ distributed, and
- all these column vectors are independent.

Thus the Wishart matrix is of the form

$$
\hat{\Sigma}=\frac{1}{n}\binom{X}{Y}\left(\begin{array}{ll}
X^{T} & Y^{T}
\end{array}\right)=\frac{1}{n}\left(\begin{array}{ll}
X X^{T} & X Y^{T} \\
Y X^{T} & Y Y^{T}
\end{array}\right) \in \mathbb{R}^{p \times p} .
$$

(a) Recall that, apart from some zeros, $\hat{\Sigma}$ has the same eigenvalues as

$$
\check{\Sigma}=\frac{1}{n}\left(\begin{array}{ll}
X^{T} & Y^{T}
\end{array}\right)\binom{X}{Y}=\frac{1}{n}\left(X^{T} X+Y^{T} Y\right) \in \mathbb{R}^{n \times n}
$$

Give, for $p \leq n$, the relation between the Stieltjes transforms of $\hat{\Sigma}$ and of $\check{\Sigma}$.
(b) By following the same ideas as in class for the determination of the MarchenkoPastur law, show that the limit $\check{S}(z)$ of the Stieltjes transform for this $\check{\Sigma}$ satisfies

$$
1+z \check{S}(z)=\frac{\gamma}{2} \frac{t_{1} \check{S}(z)}{1+t_{1} \check{S}(z)}+\frac{\gamma}{2} \frac{t_{2} \check{S}(z)}{1+t_{2} \check{S}(z)}
$$

(c) If we put $S(z):=\check{S}(z) / \gamma$, then this satisfies the equation

$$
S(z)=-\frac{1}{\gamma z}+\frac{1}{2 z} \frac{t_{1} \gamma S(z)}{1+t_{1} \gamma S(z)}+\frac{1}{2 z} \frac{t_{2} \gamma S(z)}{1+t_{2} \gamma S(z)}
$$

This $S(z)$ gives us then the density ψ of the asymptotic eigenvalue distribution of $\hat{\Sigma}$ via the Stieljes inversion formula

$$
\psi(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \operatorname{Im}(S(t+i \varepsilon))
$$

Let $t_{1}=3, t_{2}=15$ and $\gamma=\frac{1}{5}$. In the same diagram, plot the following:
(i) The graph of ψ, obtained by numerically applying a fixed-point iteration to calculate $\psi(t) \approx \frac{1}{\pi} \operatorname{Im}(S(t+i \varepsilon))$ for $\varepsilon=0.01 .{ }^{1}$ As a starting point, any point in the complex upper half-plane will work and result in a solution in the complex upper half-plane. Use enough values for t to get a smooth curve!
(Note that there will be an additional pole at 0 , coming from the difference between $\hat{\Sigma}$ and $\check{\Sigma}$.)
(ii) A histogram of the eigenvalues of a numerical simulation of the corresponding Wishart matrix with $p=500$, normalized to fit the density.

[^0]
[^0]: ${ }^{1}$ Although the equation for $S(z)$ is a cubic one and might thus be solved explicitly, it is easier to solve the equation numerically as a fixed-point equation (especially in more general situations).

