Saarland University

Faculty of Mathematics and Computer Science
Department of Mathematics
Prof. Dr. Roland Speicher
Dr. Johannes Hoffmann

Exercises for the lecture
High Dimensional Analysis: Random Matrices and Machine Learning
Summer term 2023
Sheet 3
Hand-in: Friday, 26.05.2023, 22:00 Uhr via CMS

Exercise $1\left(2+5+3+5\right.$ points). Fix $p \in[0,1]$. Let y_{1}, \ldots, y_{n} be independent Bernoulli random variables with

$$
\mathrm{P}\left\{y_{i}=1\right\}=p, \quad \mathrm{P}\left\{y_{i}=0\right\}=1-p
$$

and consider $y:=y_{1}+\ldots+y_{n}$. Let $\delta>0$.
(a) Show that $E\left[\exp \left(\lambda y_{i}\right)\right] \leq \exp (p(\exp (\lambda)-1))$ holds for every $\lambda>0$.
(b) Conclude the following classic Chernoff bound:

$$
\mathrm{P}\{y \geq(1+\delta) n p\} \leq\left(\frac{\exp (\delta)}{(1+\delta)^{1+\delta}}\right)^{n p}
$$

Hint: we know from class that

$$
\mathrm{P}\{y \geq \alpha\} \leq \exp (-\lambda \alpha) \prod_{i=1}^{n} E\left[\exp \left(\lambda y_{i}\right)\right] \quad \text { for any } \quad \lambda>0 .
$$

(c) Assume you are rolling a fair six-sided dice n times. Apply (b) to estimate the probability to roll a six at least 70% of the experiments.
(d) Compare the estimate of (b) with the estimates from the Markov and the Chebyshev Inequalities. Run a simulation of the experiment in (c) to test how tight the predictions of the three bounds are for $n \in\{1,5,25,100\}$ (use 1,000 repetitions of each experiment to get sensible data).

Exercise $2(6+6$ points).
(a) Let x be a sub-exponential centred random variable, i.e. a one-dimensional real random variable with mean zero and such that there exists a constant $c>0$ satisfying

$$
E[\exp (\lambda x)] \leq \exp \left(c^{2} \lambda^{2}\right) \quad \text { for all } \quad|\lambda| \leq \frac{1}{c}
$$

Prove that we then have

$$
\mathrm{P}\{x \geq \alpha\} \leq \begin{cases}\exp \left(-\frac{\alpha^{2}}{4 c^{2}}\right), & \text { if } \alpha \leq 2 c \\ \exp \left(-\frac{\alpha}{2 c}\right), & \text { if } \alpha>2 c\end{cases}
$$

(b) In the proof of Theorem 2.2. we have shown that for a standard Gaussian random vector $x \sim N\left(0, I_{p}\right)$ we have the concentration

$$
\mathrm{P}\left\{\left|\|x\|^{2}-p\right| \geq \varepsilon \sqrt{p}\right\} \leq 2 \exp \left(-\frac{\varepsilon^{2}}{16}\right) .
$$

However, this was only for the case where $\varepsilon \sqrt{p} \leq p$, but the proof actually works for all $\varepsilon \sqrt{p} \leq 2 p$. Complement this now by a corresponding estimate also for the case of large deviations $\varepsilon \sqrt{p}>2 p$.

Exercise 3 (7 points). Show that every bounded random variable is sub-Gaussian: let x be a real random variable that is bounded, i.e., for some $a, b \in \mathbb{R}$ we have

$$
\mathrm{P}\{a \leq x \leq b\}=1
$$

Assume also that x is centred, i.e., $E[x]=0$. Then there exists a $c \in \mathbb{R}$ such that we have for all λ

$$
E[\exp (\lambda x)] \leq \exp \left(c \lambda^{2}\right)
$$

The best constant is actually given by $c=\frac{(b-a)^{2}}{8}$, but here we are satisfied with any bound.

Hint: for symmetric distributions the situation is easy; in the non-symmetric case one might try to symmetrize the situation by going over, as in our proof of Theorem 3.2., from $E[\exp (\lambda x)]$ to $E[\exp (\lambda(x-y))]$, where y is an independent copy of x.

Exercise $4(2+4$ points). Consider the following statement: if $h:=f \circ g$ is the composition of two convex functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, then h is also convex.
(a) Give a counterexample to show that the statement is not true in general.
(b) Repair the statement by introducing an additional assumption on f and g and prove the statement under this assumption.

