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(Parts of) exercises that start with the indicator “Bonus” consider advanced or more
philosophical questions; they come with extra points, but you cannot get more than 40
points per exercise sheet.

Definition. A random vector x ∈ Rp is a Gaussian random vector with mean vector
µ ∈ Rp and covariance matrix Σ ∈ Rp×p, denoted x ∼ N(µ,Σ), if its probability density
function ψ is given by

ψ(x) =
1

(2π)p/2 det(Σ)1/2
exp

(
−1

2

〈
x− µ,Σ−1(x− µ)

〉)
.

The mean µ can be an arbitrary vector in Rp, but the covariance matrix Σ ∈ Rp×p has to
be positive definite.

If µ = 0 and Σ = Ip, then x is also called a standard Gaussian random vector.

Exercise 1 (6 points). Consider n independent copies x1, . . . , xn ∈ Rp of Gaussian
random vectors with mean zero, where the components of each xk are independent and
half of them has variance 1 and the other half has variance 2. Plot a histogram of the p
eigenvalues of the sample covariance matrix

Σ̂ :=
1

n

n∑
k=1

xkx
T
k ∈ Rp×p

for the following parameters:

(i) p = 100, n = 400

(ii) p = 100, n = 4000

(iii) p = 100, n = 40000

(iv) p = 500, n = 2000

(v) p = 1000, n = 4000

in the domain [0, 4]. Choose 1
10

as the width of the bars (or bins) in the histogram.
Further experimentation is encouraged.
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Exercise 2 (3 + 3 + 3∗ + 3 points). In this exercise, let p = 1,000.

(a) Consider n independent copies x1, . . . , xn ∈ Rp of standard Gaussian random vec-
tors, i.e., xi ∼ N(0, Ip). As in Exercise 1, plot the histogram for the p eigenvalues
of the sample covariance matrix and compare this with the Marchenko-Pastur dis-
tribution, which is given by the density

ψ(t) =
1

2π

√
(γ+ − t)(t− γ−)

γt
on the interval [γ−, γ+],

where
γ =

p

n
, γ− = (1−√

γ)2, γ+ = (1 +
√
γ)2.

Do this for γ = 1
4
, γ = 1

2
and γ = 1.

Hint: functions that draw histograms often can also automatically rescale the data
to mimic a probability density function, which allows to draw actual densities like
Marchenko-Pastur on top for easier comparison.

(b) The above is for γ ≤ 1. How does the formula change for γ > 1? Plot the cases
γ = 2 and γ = 4 like above.

(c) Bonus: what is the relation between the case γ and the case 1
γ
?

Hint: how are the eigenvalues of XXT and XTX for a rectangular matrix X related?

(d) Now change in xi ∼ N(0, Ip) the covariance matrix from Ip to Σ by replacing
the (1, 1)-entry 1 with 1 + β and plot again the histograms from above for all
combinations of γ ∈

{
1
4
, 1
2
, 1
}

and β ∈ {1, 2}.
The BBP (Baik, Ben Arous, Péché) transition predicts that (in the limit n → ∞)
the eigenvalue 1 + β of Σ survives as a visible outlier in the eigenvalues of Σ̂, as
long as β ≥ √

γ, and then sits at the position (1 + β)(1 + γ
β
). Check whether this is

confirmed by your data!

Exercise 3 (3 + 3 points). Let x ∈ Rp be a random vector with probability density
function ψ : Rp → R, then the expectation of x is

E[x] =

∫
Rp

xψ(x) dx ∈ Rp.

and the covariance of x is

Σ(x) = E[xxT ]− E[x]E[x]T ∈ Rp×p.

Let A ∈ Rp×p and b ∈ Rp.

(a) Show that E is linear in the sense that E[Ax+ b] = AE[x] + b.

(b) Write Σ(Ax+ b) in terms of Σ(x).
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Exercise 4 (3 + 3 + 3 + 2∗ points).

(a) Show that for a standard Gaussian random variable x ∼ N(0, Ip) we have E[x] = 0
and Σ(x) = Ip.

(b) Let y = Ax+ b be an affine transformation of x ∼ N(µ,Σ) by an invertible matrix
A ∈ Rp×p and an arbitrary vector b ∈ Rp. Find µ̃ and Σ̃ such that y ∼ N(µ̃, Σ̃).

(c) Conclude that for x ∼ N(µ,Σ) we have E[x] = µ and Σ(x) = Σ.

(d) Bonus: the affine transformation y = Ax + b for x ∼ N(0, Ip) also makes sense for
arbitrary matrices A that are not necessarily invertible. It seems appropriate to also
call this a Gaussian random vector. Are there uniform descriptions which support
this point of view?

Exercise 5 (5 + 5 points). We will address here concentration estimates for the law of
large numbers, and see that control of higher moments allows stronger estimates. Let xi
be a sequence of independent and identically distributed random variables with common
mean µ = E[xi] and write X := (x1, x2, . . . ) We put

Sn(X) = Sn(x1, . . . , xn) :=
1

n

n∑
i=1

xi.

(a) Assume that the variance V [xi] is finite. Prove that we have then the weak law of
large numbers, i.e., convergence in probability of Sn to the mean: for any ε > 0

P {(x1, . . . , xn) : |Sn(X)− µ| ≥ ε} n→∞−−−→ 0.

(b) Assume that the fourth moment of the xi is finite, i.e. E[x4i ] < ∞ (note that this
implies that also all moments of smaller order are finite). Show that we then have

∞∑
n=1

P {(x1, . . . , xn) : |Sn(X)− µ| ≥ ε} <∞.

(Note: by the Borel-Cantelli Lemma, this then implies the strong law of large num-
bers, i.e., Sn → µ almost surely.)

One should also note that our assumptions for the weak and strong law of large numbers
are far from optimal. Even the existence of the variance is not needed for them, but for
proofs of such general versions one needs other tools than our simple consequences of the
Chebyshev/Markov inequalities.
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