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Exercise 1 (5 points). Show that∫
R
exp(−t2) dt =

√
π.

Hint: start by showing that(∫
R
exp(−t2) dt

)2

=

∫
R

∫
R
exp(−t2 − s2) dt ds

and compute the double integral using polar coordinates.

Definition. A real random variable x is a Gaussian random variable with mean µ ∈ R
and variance σ2 ∈ (0,∞), denoted by x ∼ N(µ, σ2), if its probability density function ψ
is given by

ψ : R → R, t 7→ ψ(t) =
1

σ
√
2π

exp

(
−1

2

(
t− µ

σ

)2
)
.

If µ = 0 and σ = 1, then x is also called a standard Gaussian.
For a function f : R → R, the expectation of f(x) is

E[f(x)] =

∫
R
f(t)ψ(t) dt;

the n-th moment of x is given by

E[xn] =

∫
R
tnψ(t) dt.
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Exercise 2 (3 + 4 + 3 + 3 + 2 points). Let x ∼ N(µ, σ2).

(a) Use Exercise 1 to compute E[x0] and E[x1]. Explain the results.

(b) Show that x satisfies the moment recursion

E[xn] = µE[xn−1] + (n− 1)σ2E[xn−2] for all integers n ≥ 2.

(c) Find the higher moments E[x2], E[x3], and E[x4].

(d) Give an explicit formula for the moments of x in the case µ = 0.

(e) Calculate for the standard Gaussian x ∼ N(0, 1) the first central moment

E [|x|] =
∫
R
|t|ψ(t) dt.

Exercise 3 (3 + 3 + 4 points). We know from class that

P {(t1, . . . , tp) ∈ Bp : |tp| ≥ ε} =
2
∫ 1

ε
vol[Bp−1(

√
1− t2)] dt

vol[Bp]

= 2
vol[Bp−1]

vol[Bp]

∫ 1

ε

(1− t2)
p−1
2 dt.

Note that this includes also in particular for ε = 0 a formula for the ratio of the unit balls
of consecutive dimensions:

1 = 2
vol[Bp−1]

vol[Bp]

∫ 1

0

(1− t2)
p−1
2 dt.

By estimating the integrals we want to show from this an estimate for

P {(t1, . . . , tp) ∈ Bp : |tp| ≥ ε} .

(a) Prove for y ≥ 0 the estimate∫ ∞

y

exp(−t2) dt ≤
√
π

2
exp(−y2).

Hint: treat the cases y ≤ 1 and y > 1 separately.

(b) Let p ≥ 3. Prove that∫ 1

0

(1− t2)
p−1
2 dt ≥

∫ 1√
p−1

0

(1− t2)
p−1
2 dt ≥ 1

2
√
p− 1

.

Hint: Bernoulli’s inequality states that (1 + a)b ≥ 1 + ab for all real numbers b ≥ 1
and a ≥ −1.
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(c) Let p ≥ 3. Show that

P {(t1, . . . , tp) ∈ Bp : |tp| ≥ ε} ≤
√
2π exp

(
−ε2p− 1

2

)
,

and thus

P {(t1, . . . , tp) ∈ Bp : |tp| ≤ ε} ≥ 1−
√
2π exp

(
−ε2p− 1

2

)
.

Hint: use Lemma 1.4: for p ≥ 1 und 0 < ε ≤ 1 we have (1− ε)p ≤ exp(−εp).

Definition. Let x = (t1, . . . , tp) ∈ Rp. We define the following norms:

• ∥x∥2 :=

√√√√ p∑
k=1

t2k (Euclidean norm, length, 2-norm)

• ∥x∥1 :=
p∑

k=1

|tk| (ℓ1 norm, Manhattan norm, 1-norm)

• ∥x∥∞ := max {|tk| : 1 ≤ k ≤ p} (maximum norm, infinity norm)

Exercise 4 (4 + 3 + 3 points). In this exercise, you are tasked with performing some
numerical experiments and presenting the results as a histogram similar to the ones shown
in the slides of the first lecture. You are free to choose your tools to do this, for example,
you can use computer algebra systems with integrated plotting like MATLAB, Maple, or
Mathematica, or use a programming language of your choice to compute the values and
combine it with some visualization tool to plot the histogram.

As the slides in class, this exercise should give you a feeling for the concentration phe-
nomena. We consider in the following Gaussian random vectors x ∈ Rp with independent
standard Gaussians as components; i.e., every component of the vector is a Gaussian ran-
dom variable with mean zero and variance 1 and the components are independent from
each other. Such vectors show concentration.

The concentration property says roughly that for our high-dimensional vector x =
(t1, . . . , tp) ∈ Rp any function f(x) = f(t1, . . . , tp) that depends (in a ‘smooth’ way) on
the components (but not too much on any of them) is essentially constant, and thus close
to the average value E[f(x)] of the function. (Later in the course the parentheticals will
be made more precise via the notion of Lipschitz functions.) In part (a) we consider
the relatively simple situation where the function f is essentially a sum of independent
components. In that case the expectation is also quite easy to determine. In part (b), the
function f is much more non-linear, and its expectation is not directly clear. In part (c),
we arrange our vectors in a matrix form and take as function f the largest eigenvalue of
those matrices – these are very non-linear (and not very concrete) functions of the matrix
entries, but still ‘smooth enough’, so that we also have concentration of the eigenvalues.

(a) For f we take here the 1-norm f(x) = ∥x∥1 and the 2-norm f(x) = ∥x∥2. For each
of the two cases plot a histogram of f(x) for 1, 000 realizations of the vector x ∈ Rp.
Do this for p = 1, p = 100, and p = 10, 000. You should recognize in those plots
the dependence of E[f(x)] on p. Can you explain those values? (For the case of the
1-norm, Exercise 2(e) should be relevant.)

3



(b) For f we take now the maximum norm f(x) = ∥x∥∞. Plot a histogram of f(x) for
1,000 realizations of the vector x ∈ Rp. Do this for p = 1, p = 10, p = 10, 000, and
p = 100, 000.

The value of E[f(x)] will probably not become clear from the plots. Instead, we
can look at some estimates for the concentration: let M be the median of the f(xj),
then for all ε > 0 we have

P (f(x) > (1 + ε)M) ≤
√

2

π

p

(1 + ε)M
exp

(
−1

2
(1 + ε)2M2

)
.

Check for some reasonable values for ε whether this is compatible with your data.

(c) We consider now a sample covariance matrix

Σ̂ =
1

n

n∑
k=1

xkx
T
k =

1

n
XXT ,

where x1, . . . , xn ∈ Rp are n independent copies of our p-dimensional random vectors
x as above, and X = [x1x2 . . . xn] ∈ Rp×n is the corresponding data matrix. (Such
random matrices Σ̂ are called Wishart matrices.) We take as our function f now
the largest eigenvalue of Σ̂ (which is the same as the square of the largest singular
value of the matrix X/

√
n.) This f(X) = f(x1, . . . , xn) is a very non-linear (and

not explicit) function of the p × n independent standard Gaussian entries of the
data matrix X. Plot a histogram of f(X) for 1, 000 realizations of the data matrix
X = [x1 . . . xn]. Do this for p = n = 1, p = n = 10, p = n = 50, p = n = 100.

In this case concentration estimates are quite complicated and not very explicit, so
let us just quote the following simple rules of thumb (according to the paper “On
the distribution of the largest eigenvalue in principal component analysis” by Iain
Johnstone): define

µ :=
1

n

(√
n− 1 +

√
p
)2

and σ :=
1

n

(√
n− 1 +

√
p
)( 1√

n− 1
+

1
√
p

) 1
3

.

Then, about 83% of the distribution is less than µ, about 95% lies below µ+σ, and
about 99% lies below µ+ 2σ.

Check whether this is compatible with your data.

Further experimentation is encouraged.
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